Mathematics Textbook for Class - 10 - 1062: Amazon.in: NCERT: Books

1. Distance Formula

The shortest distance between any two points is the length of the straight line joining the points. We can use this to measure the distance between two points. What if we want to find the distance between two cities that are in two different countries? It is not easy to measure the distance by drawing a straight line!

Here is another way to do this тАУ

Any point on the coordinate axes can be denoted by a pair of numbers, called the coordinates of that point. Similarly, every place in this world is denoted by a latitude and longitude, which give us the coordinates of that place. We can make use of these coordinates to compute the distance between the cities using the distance formula.

  • X-coordinate or abscissa: The distance between a point and y-axis.
  • Y-coordinate or ordinate: The distance between a point and x-axis.
  • Form of a point on the x-axis: (x, 0); on the y-axis: ┬а(0, y)
  • A linear equation, ax + by + c = 0, (a, b┬аspan id="MathJax-Element-1-Frame" class="MthJax" style="box-sizing: border-box; margin: 0px; padding: 0px; word-break: break-word; display: inline; font-style: normal; font-weight: normal; line-height: normal; font-size: 1em; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" data-mathml="">тЙатЙа┬аzero), when represented graphically is a straight line.
  • The graph of y = axspan id="MathJax-Eement-2-Frame" class="MathJax" style="box-sizing: border-box; margin: 0px; padding: 0px; word-break: break-word; display: inline; font-style: normal; font-weight: normal; line-height: normal; font-size: 1em; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" data-mathml="2">22┬а+ bx + c (a┬аspan id="MathJx-Element-3-Frame" class="MathJax" style="box-sizing: border-box; margin: 0px; padding: 0px; word-break: break-word; display: inline; font-style: normal; font-weight: normal; line-height: normal; font-size: 1em; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" data-mathml="">тЙатЙа┬а0), is a parabola.

Distance formula

  • The distance between two points┬аspan id="MathJax-Element-4-Frame class="MathJax" style="box-sizing: border-box; margin: 0px; padding: 0px; word-break: break-word; display: inline; font-style: normal; font-weight: normal; line-height: normal; font-size: 1em; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" data-mathml="P(x1,x2)">P(x1,x2)P(x1,x2)┬аand┬аspan i="MathJax-Element-5-Frame" class="MathJax" style="box-sizing: border-box; margin: 0px; padding: 0px; word-break: break-word; display: inline; font-style: normal; font-weight: normal; line-height: normal; font-size: 1em; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" data-mathml="Q(x2,y2)">Q(x2,y2)Q(x2,y2)┬аis
    • span id="MathJax-Element-6-Frame" class="MathJax" style="box-sizing: border-box; margin: 0px; padding: 0px; word-break: break-word; display: inline; font-style: normal; font-weight: normal; line-height: normal; font-size: 1em; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" data-mathml="PQ=(x2x1)2+(y2y1)2">PQ=(x2тИТx1)2+(y2тИТy1)2тИТтИТтИТтИТтИТтИТтИТтИТтИТтИТтИТтИТтИТтИТтИТтИТтИТтИТтИТтИТтИЪPQ=(x2тИТx1)2+(y2тИТy1)2
  • The distance of a point P(x, y) from the origin O(0, 0) is given by
    • span id="MathJax-Element-7-Frame" class="MathJax" style="box-sizing: border-box; margin: 0px; padding: 0px; word-break: break-word; display: inline; font-style: normal; font-weight: normal; line-height: normal; font-size: 1em; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" data-mathml="OP=(x)2+(y)2">OP=(x)2+(y)2тИТтИТтИТтИТтИТтИТтИТтИТтИТтИЪ

span class="MathJax" style="box-sizing: border-box; margin: 0px; padding: 0px; word-break: break-word; display: inline; font-style: normal; font-weight: normal; line-height: normal; font-size: 1em; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" data-mathml="OP=(x)2+(y)2">2. Section Formula

The section formula helps in finding the coordinates of a point dividing a given line segment into two parts such that their lengths are in a given ratio. A special case of this is the midpoint of a line segment, which divides the line segment in two two parts in the ratio 1:1.

This formula is helpful in coordinate geometry, for instance, it can be used to find out the centroid, incenter and excenters of a triangle. It has applications in physics too; it helps find the center of mass of systems, equilibrium points, and more.

Section formula

The coordinates of a┬аpoint P, which divides the line segment AB internally in the ratio┬аspan id="MathJax-Element-8-Frame" class="MathJax" style="box-sizing: border-box; margin: px; padding: 0px; word-break: break-word; display: inline; font-style: normal; font-weight: normal; line-height: normal; font-size: 1em; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" data-mathml="m1:m2">m1:m2m1:m2┬аare given by:

  • span id="MathJax-Element-9-Frame" class="MathJax" style="box-sizing: border-box; margin: 0px; padding: 0px; word-break: break-word; display: inline; font-style: normal; font-weight: normal; line-height: normal; font-size: 1em; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" data-mathml="(m1x2+m2x1)(m1+m2)">(m1x2+m2x1)(m1+m2)(m1x2+m2x1)(m1+m2),┬аspn id="MathJax-Element-10-Frame" class="MathJax" style="box-sizing: border-box; margin: 0px; padding: 0px; word-break: break-word; display: inline; font-style: normal; font-weight: normal; line-height: normal; font-size: 1em; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" data-mathml="(m1y2+m2y1)(m1+y2)">(m1y2+m2y1)(m1+y2)(m1y2+m2y1)(m1+y2)or,
  • span id="MathJax-Element-11-Frame" class="MathJax" style="box-sizing: border-box; margin: 0px; padding: 0px; word-break: break-word; display: inline; font-style: normal; font-weight: normal; line-height: normal; font-size: 1em; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" data-mathml="(kx2+x1)(k+1)">(kx2+x1)(k+1)(kx2+x1)(k+1),┬аspn id="MathJax-Element-12-Frame" class="MathJax" style="box-sizing: border-box; margin: 0px; padding: 0px; word-break: break-word; display: inline; font-style: normal; font-weight: normal; line-height: normal; font-size: 1em; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" data-mathml="(ky2+y1)(k+1)">(ky2+y1)(k+1)(ky2+y1)(k+1)┬аwhere k =┬аspan id="MatJax-Element-13-Frame" class="MathJax" style="box-sizing: border-box; margin: 0px; padding: 0px; word-break: break-word; display: inline; font-style: normal; font-weight: normal; line-height: normal; font-size: 1em; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" data-mathml="m1m2">m1m2m1m2

Special case

  • The midpoint of a line segment divides the line segment in the ratio 1 : 1
    • The coordinates of a point P (midpoint) which divides the line segment AB in the ratio 1:1 is┬аspan id="MathJax-Element-14-Frame" class="MathJax" style="box-sizing: border-box; margin: 0px;padding: 0px; word-break: break-word; display: inline; font-style: normal; font-weight: normal; line-height: normal; font-size: 1em; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" data-mathml="(x2+x1)2">(x2+x1)2(x2+x1)2,┬аspn id="MathJax-Element-15-Frame" class="MathJax" style="box-sizing: border-box; margin: 0px; padding: 0px; word-break: break-word; display: inline; font-style: normal; font-weight: normal; line-height: normal; font-size: 1em; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" data-mathml="(y2+y1)2">(y2+y1)2(y2+y1)2
    • This is also called the midpoint formula.
    • Centroid is the point of intersection of the three medians of a triangle. It divides the median in the ratio of 2 : 1
    • If Aspa id="MathJax-Element-16-Frame" class="MathJax" style="box-sizing: border-box; margin: 0px; padding: 0px; word-break: break-word; display: inline; font-style: normal; font-weight: normal; line-height: normal; font-size: 1em; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" data-mathml="(x1,y1)">(x1,y1)(x1,y1), Bspn id="MathJax-Element-17-Frame" class="MathJax" style="box-sizing: border-box; margin: 0px; padding: 0px; word-break: break-word; display: inline; font-style: normal; font-weight: normal; line-height: normal; font-size: 1em; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" data-mathml="(x2,y2)">(x2,y2)(x2,y2)┬аand Cspan i="MathJax-Element-18-Frame" class="MathJax" style="box-sizing: border-box; margin: 0px; padding: 0px; word-break: break-word; display: inline; font-style: normal; font-weight: normal; line-height: normal; font-size: 1em; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" data-mathml="(x3,y3)">(x3,y3)(x3,y3)┬аare vertices of a triangle, then the coordinates of the centroid is given by (span id="MathJax-Element-19-Frame" class="MathJax" style="box-sizing: border-bo; margin: 0px; padding: 0px; word-break: break-word; display: inline; font-style: normal; font-weight: normal; line-height: normal; font-size: 1em; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" data-mathml="x1+x2+x33">x1+x2+x33x1+x2+x33,┬аspn id="MathJax-Element-20-Frame" class="MathJax" style="box-sizing: border-box; margin: 0px; padding: 0px; word-break: break-word; display: inline; font-style: normal; font-weight: normal; line-height: normal; font-size: 1em; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" data-mathml="y1+y2+y33">y1+y2+y33y1+y2+y33)

3. Area of a Triangle

When three vertices of a triangle are given, it is cumbersome to try to find the length of the base and the height of the triangle to compute its area. However, if the coordinates of the vertices of the triangle are known, there is a simpler formula to calculate the area. This formula can also be used to find the areas of quadrilaterals as well.

Formula for finding the area of a triangle

The area of a triangle ABC with vertices A(x1, y1), B(x2, y2) and C(x3, y3) is given by

  • span id="MathJax-Element-21-Frame" class="MathJax" style="box-sizing: border-box; margin: 0px; padding: 0px; word-break: break-word; display: inline; font-style: normal; font-weight: normal; line-height: normal; font-size: 1em; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" data-mathml="12">1212span id="MathJax-Element-22-Frame" class="MathJax" style="box-sizing: border-box; margin: 0px; padding: 0px; word-break: break-word; display: inline; font-style: normal; font-weight: normal; line-height: normal; font-size: 1em; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" data-mathml="[x1(y2y3)+x2(y3y1)+x3(y1y2)]">[x1(y2тИТy3)+x2(y3тИТy1)+x3(y1тИТy2)][x1(y2тИТy3)+x2(y3тИТy1)+x3(y1тИТy2)]┬аsquare units
  • If area (span id=MathJax-Element-23-Frame" class="MathJax" style="box-sizing: border-box; margin: 0px; padding: 0px; word-break: break-word; display: inline; font-style: normal; font-weight: normal; line-height: normal; font-size: 1em; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" data-mathml="">╬Ф╬ФABC) = 0 sq units, then A, B, C are collinear.
  • Area cannot be negative. In cases where the answer is negative, consider the numerical value of area without the negative sign.

To find the area of a quadrilateral, divide it┬аinto two triangles by joining two opposite vertices, find the┬аareas of these triangles and then add them.

Articleflash

Trending 20

Older Posts